• Zum Hauptinhalt springen
  • Zum Footer springen
  • Deutsch - de
  • English - en

    SyNergy - Mu...

    • Über uns
      • Über uns
      • Maßnahmen
      • Mitglieder
      • Cluster Management
      • PhD und Postdoc-Vertreter
      • Wissenschaftlicher Beirat
      • Internationale Kooperationspartner
      • Timeline
      • Pressekit
      • Kontakt
    • Aktuelles
      • News
      • Veranstaltungen
      • Presseecho
      • Stellenausschreibungen
    • Forschung
      • Publikationen
      • Unser Forschungsschwerpunkt
      • Technology Hubs
      • "Research Spotlight"
      • Management von Forschungsdaten
      • Sustainability Initiative
      • Verhaltenskodex
    • Wissenschaft & Gesellschaft
      • Für Schulen und Schüler
      • Öffentliche Veranstaltungen
      • Podcasts
      • Videos
    • Support für Diversity & Equity
      • Newcomer Center
      • Gender Equality Program
      • Early Career Investigator Programm
    1. Home
    2. Aktuelles
    3. News
    4. Schlüsselmechanismen für die Regeneration von Nervenzellen identifiziert
    News | 02.07.2024 | Press Release

    Schlüsselmechanismen für die Regeneration von Nervenzellen identifiziert

    Schlüsselmechanismen für die Regeneration von Nervenzellen identifiziert 02.07.2024 Forschende von LMU und Helmholtz Munich zeigen, wie Gliazellen mithilfe epigenetischer Modifikationen zu Neuronen umprogrammiert werden.
    LMU
    Magdalena Götz

    Neurologische Erkrankungen wie Trauma, Schlaganfall, Epilepsie und verschiedene neurodegenerative Erkrankungen führen häufig zu einem dauerhaften Verlust von Nervenzellen, was zu erheblichen Beeinträchtigungen der Gehirnfunktion führt. Die derzeitigen Behandlungsmöglichkeiten sind begrenzt, weil es immer noch eine Herausforderung ist, verloren gegangene Nervenzellen zu regenerieren. Die neuronale Reprogrammierung, ein komplexes Verfahren, bei dem ein Zelltyp in einen anderen umgewandelt wird, bietet eine vielversprechende Strategie. In Zellkultur und in lebenden Organismen können Gliazellen – also nicht neuronale Zellen des zentralen Nervensystems – erfolgreich in funktionelle Neuronen umgewandelt werden. Die an dieser Umprogrammierung beteiligten Prozesse sind jedoch komplex und noch nicht ausreichend verstanden. Diese Komplexität stellt eine Herausforderung, aber auch eine Motivation für Forschende auf dem Gebiet der Neurowissenschaften und der regenerativen Medizin dar.


    Umstrukturierung des Epigenoms

    Zwei Teams, eines unter der Leitung von Magdalena Götz, Inhaberin des Lehrstuhls für Physiologische Genomik an der LMU, Direktorin des Instituts für Stammzellforschung bei Helmholtz Munich und Mitglied im Exzellenzcluster SyNergy, und das andere unter der Leitung von Boyan Bonev am Helmholtz Pioneer Campus, haben die molekularen Mechanismen untersucht, mit denen Gliazellen mithilfe eines einzigen Transkriptionsfaktors in Neuronen umgewandelt werden. Dabei konzentrierten sich die Forschenden auf kleine chemische Modifikationen des Erbguts, sogenannte epigenetische Veränderungen. Das Epigenom trägt dazu bei, zu kontrollieren, welche Gene in verschiedenen Zellen zu verschiedenen Zeitpunkten aktiv sind. Die Teams konnten nun zum ersten Mal zeigen, wie koordiniert die Umstrukturierung des Epigenoms durch einen einzigen Transkriptionsfaktor gesteuert wird.

    Mit Hilfe neuartiger Methoden der Epigenomprofilierung deckten die Forschenden auf, dass eine posttranslationale Modifikation des reprogrammierenden neurogenen Transkriptionsfaktors Neurogenin2 die epigenetische Umstrukturierung und die neuronalen Reprogrammierung maßgeblich beeinflusst. Allerdings genügt der Transkriptionsfaktor allein nicht, um die Gliazellen umzuprogrammieren: Die Forschenden identifizierten ein neuartiges Protein, den Transkriptionsregulator YingYang1, als Schlüsselfaktor für diesem Prozess. YingYang1 ist notwendig, um das Erbgut für die Umprogrammierung zu öffnen, und interagiert dafür mit dem Transkriptionsfaktor. „Das Protein Ying Yang 1 ist entscheidend, um die Umwandlung von Astrozyten in Neuronen zu erreichen", erklärt Götz. "Diese Erkenntnisse sind wichtig, um die Reprogrammierung von Gliazellen zu Neuronen zu verstehen und zu verbessern, und bringen uns damit therapeutischen Lösungen näher.“

    • Lesen Sie die vollständige Meldung auf der Website der LMU

    Teilnehmende Universitäten
     LMU logo in white
     TUM logo in white
    Partnerinstitute
     Logo DZNE in white
    Helmholtz Munich logo in white 
     Logo Max Planck Gesellschaft 

    SyNergy wird von der Deutschen Forschungsgemeinschaft im Rahmen der deutschen Exzellenzstrategie gefördert (EXC 2145 SyNergy - ID 390857198). Die Exzellenzstrategie fördert herausragende Forschung an deutschen Universitäten. 

    Kontakt

    Munich Cluster for Systems Neurology (SyNergy)

    Feodor-Lynen-Str. 17
    81377 Munich
    +49 (0)89 4400-46497
    yüubgybcјuipxјhvfulyz-mi
    Anmeldung für Redakteure
    Impressum | Datenschutz