Schlüsselmechanismen für die Regeneration von Nervenzellen identifiziert
Neurologische Erkrankungen wie Trauma, Schlaganfall, Epilepsie und verschiedene neurodegenerative Erkrankungen führen häufig zu einem dauerhaften Verlust von Nervenzellen, was zu erheblichen Beeinträchtigungen der Gehirnfunktion führt. Die derzeitigen Behandlungsmöglichkeiten sind begrenzt, weil es immer noch eine Herausforderung ist, verloren gegangene Nervenzellen zu regenerieren. Die neuronale Reprogrammierung, ein komplexes Verfahren, bei dem ein Zelltyp in einen anderen umgewandelt wird, bietet eine vielversprechende Strategie. In Zellkultur und in lebenden Organismen können Gliazellen – also nicht neuronale Zellen des zentralen Nervensystems – erfolgreich in funktionelle Neuronen umgewandelt werden. Die an dieser Umprogrammierung beteiligten Prozesse sind jedoch komplex und noch nicht ausreichend verstanden. Diese Komplexität stellt eine Herausforderung, aber auch eine Motivation für Forschende auf dem Gebiet der Neurowissenschaften und der regenerativen Medizin dar.
Umstrukturierung des Epigenoms
Zwei Teams, eines unter der Leitung von Magdalena Götz, Inhaberin des Lehrstuhls für Physiologische Genomik an der LMU, Direktorin des Instituts für Stammzellforschung bei Helmholtz Munich und Mitglied im Exzellenzcluster SyNergy, und das andere unter der Leitung von Boyan Bonev am Helmholtz Pioneer Campus, haben die molekularen Mechanismen untersucht, mit denen Gliazellen mithilfe eines einzigen Transkriptionsfaktors in Neuronen umgewandelt werden. Dabei konzentrierten sich die Forschenden auf kleine chemische Modifikationen des Erbguts, sogenannte epigenetische Veränderungen. Das Epigenom trägt dazu bei, zu kontrollieren, welche Gene in verschiedenen Zellen zu verschiedenen Zeitpunkten aktiv sind. Die Teams konnten nun zum ersten Mal zeigen, wie koordiniert die Umstrukturierung des Epigenoms durch einen einzigen Transkriptionsfaktor gesteuert wird.
Mit Hilfe neuartiger Methoden der Epigenomprofilierung deckten die Forschenden auf, dass eine posttranslationale Modifikation des reprogrammierenden neurogenen Transkriptionsfaktors Neurogenin2 die epigenetische Umstrukturierung und die neuronalen Reprogrammierung maßgeblich beeinflusst. Allerdings genügt der Transkriptionsfaktor allein nicht, um die Gliazellen umzuprogrammieren: Die Forschenden identifizierten ein neuartiges Protein, den Transkriptionsregulator YingYang1, als Schlüsselfaktor für diesem Prozess. YingYang1 ist notwendig, um das Erbgut für die Umprogrammierung zu öffnen, und interagiert dafür mit dem Transkriptionsfaktor. „Das Protein Ying Yang 1 ist entscheidend, um die Umwandlung von Astrozyten in Neuronen zu erreichen", erklärt Götz. "Diese Erkenntnisse sind wichtig, um die Reprogrammierung von Gliazellen zu Neuronen zu verstehen und zu verbessern, und bringen uns damit therapeutischen Lösungen näher.“