• Zum Hauptinhalt springen
  • Zum Footer springen
  • Deutsch - de
  • English - en

    SyNergy - Mu...

    • Über uns
      • Über uns
      • Maßnahmen
      • Mitglieder
      • Cluster Management
      • PhD und Postdoc-Vertreter
      • Wissenschaftlicher Beirat
      • Internationale Kooperationspartner
      • Timeline
      • Pressekit
      • Kontakt
    • Aktuelles
      • News
      • Veranstaltungen
      • Presseecho
      • Stellenausschreibungen
    • Forschung
      • Publikationen
      • Unser Forschungsschwerpunkt
      • Technology Hubs
      • "Research Spotlight"
      • Management von Forschungsdaten
      • Sustainability Initiative
      • Verhaltenskodex
    • Wissenschaft & Gesellschaft
      • Für Schulen und Schüler
      • Öffentliche Veranstaltungen
      • Podcasts
      • Videos
    • Support für Diversity & Equity
      • Newcomer Center
      • Gender Equality Program
      • Early Career Investigator Programm
    1. Home
    2. Aktuelles
    3. News
    4. New biomarker algorithm for detecting 4-repeat tauopathies
    News | 12.09.2024 | Research Spotlight

    New biomarker algorithm for detecting 4-repeat tauopathies

    Researchers from Ludwig-Maximilians-Universität (LMU) Munich, in collaboration with Monash University Melbourne, have developed a novel biomarker algorithm that differentiates rare primary 4-repeat-tauopathies from Alzheimer’s disease with unprecedented precision. This innovative approach, which combines cerebrospinal fluid analysis with PET imaging, offers new insights into disease mechanisms and paves the way for advanced clinical trials.
      Research Spotlight: photo of researcher with citation on impact of research

    This is a summary of R. Dilcher, S. Wall, M. Groß et. al. (2024). Combining cerebrospinal fluid and PI-2620 tau-PET for biomarker-based stratification of Alzheimer’s disease and 4R-tauopathies. Published in Alzheimer’s & Dementia. https://doi.org/10.1002/alz.14185


    The challenge

    Patients regularly show up at university hospitals with diseases so rare and specific as to be scarcely known to physicians in private practice. Primary 4-repeat tauopathies are a good example. These diseases are primarily associated with movement disorders but include symptoms that often resemble those of Alzheimer’s disease, making precise diagnosis difficult. Primary 4-repeat tauopathies are currently diagnosed almost exclusively using clinical criteria – without specific biomarkers that enable conclusive diagnosis in patients. In our study, we, therefore, developed a novel biomarker algorithm.


    Our approach

    We cross-sectionally assessed combinations of cerebrospinal fluid measures (CSF p-tau181 and t-tau) and [18F]PI-2620 tau-PET in patients with AD (n=64), clinically suspected 4R-tauopathies (PSP or CBS, n=82) and healthy controls (n=19).


    Our findings

    Our study revealed that tau in primary 4-repeat-tauopathies can be detected with the novel tau-PET tracer, but unlike in Alzheimer’s, it appears in unique subcortical brain regions while cerebrospinal fluid biomarker levels remain normal. Additionally, we found new biomarkers that indicate the presence of a 4-repeat tauopathy. Diagnosis gets really effective when we analyze a combination of cerebrospinal fluid test, innovative biomarkers, and PET signal in the subcortical regions. This allows us to recognize a 4-repeat tauopathy with high certainty.


    Implications

    The new diagnostic workflow allows for more precise differentiation between Alzheimer’s disease and primary 4-repeat-tauopathies, facilitating earlier and more accurate diagnoses and supporting personalized treatment strategies – integrating neuronal injury biomarkers, such as [18F]PI-2620-PET-assessed blood flow, increases diagnostic efficiency and minimizes radiation exposure. Implementing the new biomarker algorithm in clinical trials marks a significant advancement, accelerating the development of disease-modifying therapies for both Alzheimer’s disease and primary 4-repeat-tauopathies.


    Creating SyNergies

    SyNergy members Matthias Brendel and Nicolai Franzmeier combined their imaging expertise in this study with the clinical expertise of Günter Höglinger, Johannes Levin and Robert Perneczky. 

    Teilnehmende Universitäten
     LMU logo in white
     TUM logo in white
    Partnerinstitute
     Logo DZNE in white
    Helmholtz Munich logo in white 
     Logo Max Planck Gesellschaft 

    SyNergy wird von der Deutschen Forschungsgemeinschaft im Rahmen der deutschen Exzellenzstrategie gefördert (EXC 2145 SyNergy - ID 390857198). Die Exzellenzstrategie fördert herausragende Forschung an deutschen Universitäten. 

    Kontakt

    Munich Cluster for Systems Neurology (SyNergy)

    Feodor-Lynen-Str. 17
    81377 Munich
    +49 (0)89 4400-46497
    yaüubgy;bcјuidpxј_vfulSyzemi
    Anmeldung für Redakteure
    Impressum | Datenschutz